

Timeline	Themes/Enduring Understandings/Essential Questions for the Unit	Common Cor Standards	Standards Based Skills and Concepts Targeted	Assessments	Strategies/Practices Used to Teach Skills and Concepts	Resources/Texts Used
Unit III Anticipating Patterns: exploring random phenomena using probability and simulation						
	What is probability and how is it used? - Interpreting probability, including long-run relative frequency interpretation - Addition rule, multiplication rule, conditional probability, and independence - Discrete random variables and their probability distributions, including binomial and geometric - Simulation of random behavior and probability distributions \qquad transformation of a random variable		- DESCRIBE the idea of probability - DESCRIBE myths about randomness - DESIGN and PERFORM simulations - DESCRIBE chance behavior with a probability model - DEFINE and APPLY basic rules of probability - DETERMINE probabilities from two-way tables - CONSTRUCT Venn diagrams and DETERMINE probabilities - DEFINE conditional probability - COMPUTE conditional probabilities - DESCRIBE chance behavior with a tree diagram - DEFINE independent events - DETERMINE whether two events are independent - APPLY the general multiplication rule to solve probability questions - APPLY the concept of discrete random variables to a variety of statistical settings - CALCULATE and INTERPRET the mean (expected value) of a discrete random variable - CALCULATE and INTERPRET the standard deviation (and variance) of a discrete random variable - DESCRIBE continuous random variables - DESCRIBE the effect of performing a linear transformation on a random variable			- AP Statistics Text Book - College Board Resources - AP Practice - Standardized Test Preparation
	How to combine independent random variables? - Notion of independence versus dependence - Mean and standard deviation for sums and differences of independent random variables	None	- COMBINE random variables and CALCULATE the resulting mean and standard deviation - CALCULATE and INTERPRET probabilities involving combinations of Normal random variables			
	What is the Normal distribution and how is it used? - Properties of the Normal distribution - Using tables of the Normal distribution - The Normal distribution as a model for measurements	HSS.ID.A4	- DESCRIBE and APPLY the 68-95-99.7 Rule - DESCRIBE the standard Normal Distribution - PERFORM Normal distribution calculations - ASSESS Normality			
	What are sampling distributions and how are they used? - Sampling distribution of a sample proportion - Sampling distribution of a sample mean - Central Limit Theorem - Sampling distribution of a difference between two independent sample proportions - Sampling distribution of a difference between two independent sample means - Simulation of sampling distributions - t distribution - Chi-square distribution	HSS-IC.A. 2 HSS-IC.B. 5	-FIND the mean and standard deviation of the sampling distribution of a sample proportion - DETERMINE whether or not it is appropriate to use the Normal approximation to calculate probabilities involving the sample proportion - CALCULATE probabilities involving the sample proportion - EVALUATE a claim about a population proportion using the sampling distribution of the sample proportion - FIND the mean and standard deviation of the sampling distribution of a sample mean - CALCULATE probabilities involving a sample mean when the population distribution is Normal - EXPLAIN how the shape of the sampling distribution of sample means is related to the shape of the population distribution - APPLY the central limit theorem to help find probabilities involving a sample mean - DISTINGUISH between a parameter and a statistic - DEFINE sampling distribution - DISTINGUISH between population distribution, sampling distribution, and the distribution of sample data \qquad - DESCRIBE the relationship between sample size and the variability of an estimator - DETERMINE whether the conditions for performing inference are met.			

Summarize, represent, and interpret data on a single count or measurement variable

CCSS.Math.Content.HSS-ID.A. 1 Represent data with plots on the real number line (dot plots, histograms, and box plots)
CCSS.Math.Content.HSS-ID.A. 2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets
CCSS.Math.Content.HSS-ID.A. 3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers)
CCSS.Math.Content.HSS-ID.A. 4 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.
Summarize, represent, and interpret data on two categorical and quantitative variables
CCSS.Math.Content.HSS-ID.B. 5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.
CCSS.Math.Content.HSS-ID.B. 6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
CCSS.Math.Content.HSS-ID.B.6a Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context.
Emphasize linear, quadratic, and exponential models,
CCSS.Math.Content.HSS-ID.B.6b Informally assess the fit of a function by plotting and analyzing residuals.
CCSS.Math.Content.HSS-ID.B.6c Fit a linear function for a scatter plot that suggests a linear association.
Interpret linear models
CCSS.Math.Content.HSS-ID.C. 7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
CCSS.Math.Content.HSS-ID.C. 8 Compute (using technology) and interpret the correlation coefficient of a linear fit.
CCSS.Math.Content.HSS-ID.C. 9 Distinguish between correlation and causation.

Understand and evaluate random processes underlying statistical experiments

CCSS.Math.Content.HSS-IC.A. 1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population.
CCSS.Math.Content.HSS-IC.A. 2 Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with
probability 0.5 . Would a result of 5 tails in a row cause you to question the model?
Make inferences and justify conclusions from sample surveys, experiments, and observational studies
CCSS.Math.Content.HSS-IC.B. 3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.
CCSS.Math.Content.HSS-IC.B. 4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.
CCSS.Math.Content.HSS-IC.B. 5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.
CCSS.Math.Content.HSS-IC.B. 6 Evaluate reports based on data.

Understand independence and conditional probability and use them to interpret data

CCSS.Math.Content.HSS-CP.A. 1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").
CCSS.Math.Content.HSS-CP.A. 2 Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.
CCSS.Math.Content.HSS-CP.A. 3 Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.
CCSS.Math.Content.HSS-CP.A. 4 Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results. CCSS.Math.Content.HSS-CP.A. 5 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.
Use the rules of probability to compute probabilities of compound events.
CCSS.Math.Content.HSS-CP.B. 6 Find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A, and interpret the answer in terms of the model.
CCSS.Math.Content.HSS-CP.B. 7 Apply the Addition Rule, $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$, and interpret the answer in terms of the model.
CCSS.Math.Content.HSS-CP.B. $8(+)$ Apply the general Multiplication Rule in a uniform probability model, $P(A$ and $B)=P(A) P(B \mid A)=P(B) P(A \mid B)$, and interpret the answer in terms of the model
CCSS.Math.Content.HSS-CP.B. 9 (+) Use permutations and combinations to compute probabilities of compound events and solve problems.

Calculate expected values and use them to solve problems

CCSS.Math.Content.HSS-MD.A. 1 (+) Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.
CCSS.Math.Content.HSS-MD.A. $2(+$) Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.
CCSS.Math.Content.HSS-MD.A. 3 (+) Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value. For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expected grade under various grading schemes.
CCSS.Math.Content.HSS-MD.A. 4 (+) Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value. For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households?
Use probability to evaluate outcomes of decisions
CCSS.Math.Content.HSS-MD.B. 5 (+) Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values.
CCSS.Math.Content.HSS-MD.B.5a Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery ticket or a game at a fast-food restaurant.
CCSS.Math.Content.HSS-MD.B.5b Evaluate and compare strategies on the basis of expected values. For example, compare a high-deductible versus a low-deductible automobile insurance policy using various, but reasonable, chances of having a minor or a major accident.
CCSS.Math.Content.HSS-MD.B. 6 (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).
CCSS.Math.Content.HSS-MD.B. $7(+$) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).

