Algebra -1 (Curriculum -Map)

Timeline	Themes/Enduring Understandings/Essential Questions for the Unit		Assessments	Standards Based Skills and Concepts Targeted	Strategies/Practices Used to Teach Skills and Concepts	Resources/Texts Used
December	Essential Questions: - What does slope mean when a graph represents real world data? - What does slope means in connection to direct variation? - Once an equation is written in $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form, how can you identify the slope? - How can you use slope and a point on the line to write the equation of a line? - What if you only have two points on a line, how can you determine the slope to write the equation of the line? - What can a line be used to describe a trend in a set of data? - Is there a special relationship between the slopes of lines and whether they are parallel or perpendicular?	F.IF.2Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. S.ID. 6 aFit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. S.ID.6cFit a linear function for a scatter plot that suggests a linear association. S.ID.6Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. b. Informally assess the fit of a function by plotting and analyzing residuals. c. Fit a linear function for a scatter plot that suggests a linear association. S.ID. 8Compute (using technology) and interpret the correlation coefficient of a linear fit. A.CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. F.BF.4aSolve an equation of the form $\mathrm{f}(\mathrm{x})=\mathrm{c}$ for a simple function f that has an inverse and write an expression for the inverse. F.IF.2Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. S.ID.6aFit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. S.ID.6cFit a linear function for a scatter plot that suggests a linear association. S.ID.6Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. b. Informally assess the fit of a function by plotting and analyzing residuals. c. Fit a linear function for a	To be assessed: The students will be assessed on mathematical accuracy, the students' conceptual understanding and their ability to communicate mathematically. Collection of evidence: - 20-point quizzes-Homework quizzes will be given one per week to assess understanding of - homework. - 100 -point test-A test will be given at the end of the unit. - Notebook-A notebook will be kept that includes journal entries, lesson notes, examples, student work, and corrections. Types of assessment: - Selected response - Academic prompt - Questions and Answer - Constructed response - Observation - Journal Entries - Work Sample Assessment Values: 15\% Quizzes 50\% Tests 20% Classwork and Homework 15% Project Criteria by which the student responses will be evaluated: - Homework will be graded in class each day by stating answers out loud, placing work on the board, or peer reviewing in cooperative learning groups - Homework quizzes will be graded on mathematical reasoning, accuracy, and presentation of work. - Unit test will be graded on mathematical reasoning, accuracy, and presentation of work. - Notes and journal will be checked periodically for completion and accuracy.	Write and graph linear equations in slope-intercept form. Model real-world data with equations in slope-intercept form. Write equations of lines in pointslope form. Write linear equations in different forms. Write an equation of the line that passes through a given point, parallel to a given line. Write an equation of the line that passes through a given point, perpendicular to a given line. Investigate relationships between quantities by using points on scatter plots. Use lines of fit to make and evaluate predictions Write equations of best-fit lines using linear regression. Write equations of median-fit lines. Find the inverse of a relation. Find the inverse of a linear function.	Performance Tasks: Collected homework and class work Class Review Chapter Quiz Chapter Test Other evidence: Daily observations - class problems 5-minute checks Daily homework checks ACT Practice Student Self- Assessment/Reflection: Independent class problems, 5- minute checks Homework Final Exams and review sheets	- Algebra 1 Text Book - Quality Core Resources - ACT Practice - Standardized Test Preparation.

-	$\underline{-}$	$=$	-	-		-	
	-	=					
	$\underline{\square}$	\pm	$=$		=		
	$\underline{\square}$	\pm	$\underline{\square}$		\pm		
	-	\pm	\pm	\pm	\cdots		
	\pm	\pm	$\underline{=}$	\pm	$\underline{\square}$		
	\pm	\pm	$=$	\pm			
	\pm	$\pm=$	\pm	$\underline{\square}$			
		\pm					
-		\pm	:				
		\pm	$\underline{\square}$				
			=				

-m'	$\underline{\square}$	- -	=	-	$=$	-	
	\pm	2xamex	$\underline{-}$	$=$	$=$	2m	
	$\pm=$	$\pm=$	\pm	\pm	=		
		\pm	$\pm=$	\pm	\pm		
	$\underline{-}$	± 2		$\pm=$	\pm		
	\pm	\pm	\pm	$=$	\pm		
	$\underline{5}$	=	$\underline{=}$	\pm			
			\pm	$\underline{=}$			
				\pm			
		\pm		$\underline{=}$			
\cdots		$\underline{\square}$	$\pm=$	$=$			
			$=$				
			$=$				

Timeline	Themes/Enduring Understandings/Essential Questions for the Unit	Common Core Standards Addressed	Assessments	Standards Based Skills and Concepts Targeted	Strategies/Practices Used to Teach Skills and Concepts	Resources/Texts Used
April	Essential Questions - How do you find GCF of set of polynomials? - What is zero Product property and how is it used to solve equations? - How do you factor a Quadratic expressions of the form $\mathrm{x} 2+\mathrm{bx}+\mathrm{c}$? - How do you factor quadratic expression of the form ax $2+b x+c$ where is not equal to zero? - How can the difference of two squares be factored? - What pattern is used to determine whether an expression is perfect square trinomial? - What is parabola? - How many roots does a quadratic equation have and how do you find them? - How do you complete the square for the quadratic expression of the form $\times 2$ +bx ? - According to the Quadratic Formula, what are the solutions of a equation in the form of $a \times 2+b x+c=0$? - How can you determine whether a set of data displays exponential behavior? - What is the difference between exponential growth and exponential decay?	A.REI.4b:Solve quadratic equations by inspection (e.g., for $x 2=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a \pm bi for real numbers a and b . F.BF. 3 . Identify the effect on the graph of replacing $f(x)$ by $\mathrm{f}(\mathrm{x})+\mathrm{k}, \mathrm{kf}(\mathrm{x}), \mathrm{f}(\mathrm{kx})$, and $\mathrm{f}(\mathrm{x}+$ k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases	To be assessed: The students will be assessed on mathematical accuracy, the students' conceptual understanding and their ability to communicate mathematically. Collection of evidence: - 20-point quizzes-Homework quizzes will be given one per week to assess understanding of - homework. - 100-point test-A test will be given at the end of the unit. - Notebook-A notebook will be kept that includes journal entries, lesson notes, examples, student work, and corrections. Types of assessment: - Selected response - Academic prompt - Questions and Answer - Constructed response - Observation - Journal Entries - Work Sample Assessment Values: 15\% Quizzes 50\% Tests 20\% Classwork and Homework 15\% Project Criteria by which the student responses will be evaluated: - Homework will be graded in class each day by stating answers out loud, placing work on the board, or peer reviewing in cooperative learning groups - Homework quizzes will be graded on mathematical reasoning, accuracy, and presentation of work. - Unit test will be graded on mathematical reasoning, accuracy, and presentation of work. - Notes and journal will be checked periodically for completion and accuracy.	Solve quadratic equations by graphing. Estimate solutions of quadratic equations by graphing. Apply translations to quadratic functions. Apply dilations and reflections to quadratic functions. Complete the square to write perfect square trinomials. Solve quadratic equations by completing the square. Solve quadratic equations by using the Quadratic Formula. Use the discriminant to determine the number of solutions of a quadratic equation. Identify linear, quadratic, and exponential functions from given data. Write equations that model data. Identify and graph step functions. Identify and graph absolute value and piecewise-defined functions.	Performance Tasks: Collected homework and class work Class Review Chapter Quiz Chapter Test Other evidence: Daily observations - class problems 5-minute checks Daily homework checks ACT Practice Student Self- Assessment/Reflection: Independent class problems, 5- minute checks Homework Final Exams and review sheets	- Algebra 1 Text Book - Quality Core Resources - ACT Practice - Standardized Test Preparation.

Timeline	Themes/Enduring Understandings/Essential Questions for the Unit	Common Core Standards Addressed	Assessments	Standards Based Skills and Concepts Targeted	Strategies/Practices Used to Teach Skills and Concepts	Resources/Texts Used
May	- What is the difference between direct and inverse variation? - When might a rational expressions have excluded values? - Once you have multiplied rational expressions, how do you simplify the product? - How is dividing rational expressions connected to multiply rational expressions? - How is dividing polynomials similar to long division process used in arithmetic? - How is adding and subtracting rational expressions with like denominators similar to adding and subtracting rational numbers? - How can you find the least common denominator of two rational expressions? - How do you simplify an algebraic complex fraction? - When can you use cross products to solve rational equations?	A.CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	To be assessed: The students will be assessed on mathematical accuracy, the students' conceptual understanding and their ability to communicate mathematically. Collection of evidence: - 20-point quizzes-Homework quizzes will be given one per week to assess understanding of - homework. - 100-point test-A test will be given at the end of the unit. - Notebook-A notebook will be kept that includes journal entries, lesson notes, examples, student work, and corrections. Types of assessment: - Selected response - Academic prompt - Questions and Answer - Constructed response - Observation - Journal Entries - Work Sample Assessment Values: 15\% Quizzes 50\% Tests 20\% Classwork and Homework 15% Project Criteria by which the student responses will be evaluated: - Homework will be graded in	Identify and use inverse variations. Graph inverse variations. Identify excluded values. Identify and use asymptotes to graph rational functions. Identify values excluded from the domain of a rational expression. Simplify rational expressions. Multiply rational expressions. Divide rational expressions. Divide a polynomial by a monomial. Divide a polynomial by a binomial. Simplify mixed expressions. Simplify complex fractions. Solve rational equations. Use rational equations to solve problems.	Performance Tasks: Collected homework and class work Class Review Chapter Quiz Chapter Test Other evidence: Daily observations - class problems 5-minute checks Daily homework checks ACT Practice Student Self- Assessment/Reflection: Independent class problems, 5- minute checks Homework Final Exams and review sheets	- Algebra 1 Text Book - Quality Core Resources - ACT Practice - Standardized Test Preparation.

Timeline	Themes/Enduring Understandings/Essential Questions for the Unit	Common Core Standards Addressed	Assessments	Standards Based Skills and Concepts Targeted	Strategies/Practices Used to Teach Skills and Concepts	Resources/Texts Used
May	- What is the difference between direct and inverse variation? - When might a rational expressions have excluded values? - Once you have multiplied rational expressions, how do you simplify the product? - How is dividing rational expressions connected to multiply rational expressions? - How is dividing polynomials similar to long division process used in arithmetic? - How is adding and subtracting rational expressions with like denominators similar to adding and subtracting rational numbers? - How can you find the least common denominator of two rational expressions? - How do you simplify an algebraic complex fraction? - When can you use cross products to solve rational equations?	S.ID. 2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. S.ID. 3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).	To be assessed: The students will be assessed on mathematical accuracy, the students' conceptual understanding and their ability to communicate mathematically. Collection of evidence: - 20-point quizzes-Homework quizzes will be given one per week to assess understanding of - homework. - 100 -point test-A test will be given at the end of the unit. - Notebook-A notebook will be kept that includes journal entries, lesson notes, examples, student work, and corrections. Types of assessment: - Selected response - Academic prompt - Questions and Answer - Constructed response - Observation - Journal Entries - Work Sample Assessment Values: 15\% Quizzes 50% Tests 20\% Classwork and Homework 15% Project Criteria by which the student responses will be evaluated: - Homework will be graded in class each day by stating answers out loud, placing work on the board, or peer reviewing in cooperative learning groups - Homework quizzes will be graded on mathematical	- Classify and analyze samples. - Classify and analyze studies. - Identify sample statistics and population parameters. - Analyze data sets using statistics. - Describe the shape of a distribution. - Use the shapes of distributions to select appropriate statistics. - Determine the effect that transformations of data have on measures of central tendency and variation. - Compare data using measures of central tendency and variation. - Use permutations. - Use combinations. - Find probabilities of independent and dependent events. - Find probabilities of mutually exclusive events. - Find probabilities by using random variables. - Find the expected value of a probability distribution. - Calculate experimental probabilities. - Design simulations and summarize data from simulations.	Performance Tasks: Collected homework and class work Class Review Chapter Quiz Chapter Test Other evidence: Daily observations - class problems 5-minute checks Daily homework checks ACT Practice Student Self- Assessment/Reflection: Independent class problems, 5minute checks Homework Final Exams and review sheets	- Algebra 1 Text Book - Quality Core Resources - ACT Practice - Standardized Test Preparation.

